Solved Questions: Percentage Method of Price Elasticity of Demand
Measuring Price Elasticity
of Demand- Proportionate or Percentage Method
Learning Contents:
·
Questions
For Practice - Percentage method of price elasticity of demand
Proportionate or Percentage Method
It is one of the
commonly used method for measuring the price elasticity of demand. In this
method, the elasticity of demand is calculated as the percentage change in quantity
demanded divided by the percentage change in price. The formula for calculating
the elasticity of demand is given below:
1. The elasticity of oil demand has been estimated at -0.5. If the price of oil rises by 10%, how much will the quantity of oil demanded fall?
Solution: The following information is given:
Percentage change in the price of oil = 10% |
Percentage change in the demand for oil =? |
Ed=-0.5 |
Interpretation:
The above calculation implies
that quantity demand will fall by 5% if the price for the commodity rise by 10%
showing demand is inelastic.
Note: Whenever the value of Ed is given negative, then it is not advisable to put a negative sign in the formula.
2.
Suppose that a 10 percent hike in the price of a textbook decreases the
quantity demanded by 2 percent. The price elasticity of demand for
textbooks is
Solution: The following information is given:
Percentage change in the price of textbook =
10% |
Percentage change in the demand of
textbook =2% |
Ed=? |
Interpretation:
The above calculated
value of Elasticity of demand(Ed) is 0.2 < 1 indicates less than
unitary elastic demand. It implies that a 10% rise in the price of the commodity
caused only a 2 % fall in demand showing that change in demand is less than
change in price.
3.
Price elasticity of demand is found to be (-2). Price falls from ₹ 10 per unit
to 8 per unit. Find the percentage increase in quantity demanded.
Solution: The Following information is given:
P
= ₹ 10 |
P1=
₹ 8 |
ΔP
= P1-P =8-10 = -2 |
%
change in price = =
-2/10×100 =
-20% |
Percentage change in the demand =? |
|||
Ed= -2 |
Interpretation:
The above calculation
shows that quantity demand will increase by 40% if the price for the commodity
falls by 20% showing the demand is elastic.
Note:
Whenever the value of Ed is
given negative, then it is not advisable to put a negative sign in the formula.
4. The price elasticity of demand of a good is (-1). Calculate the percentage change in price that will raise the demand from 20 units to 30 units.
Solution: The Following information is given:
Q
= 20 |
Q1=
30 |
ΔQ
= Q1-Q =30-20 = 10 |
%
Change in Q.D = =
10/20×100 =
50% |
Percentage change in price =? |
|||
Ed= -1 |
Interpretation:
The above calculation
shows that quantity demand increases by 50% when the price for the commodity falls
by 50% showing the demand is unitary elastic.
Note:
Whenever the value of Ed is
given negative, then it is not advisable to put a negative sign in the formula.
5.
For a commodity,
Solution: The following information is given:
Percentage
change in price = =
-0.2 ×100 =
-20% |
Percentage change in quantity
demanded =? |
Ed= -
0.6 |
Interpretation:
The above calculation
shows that quantity demand increases by 12% when price for the commodity falls
by 20% showing the demand is inelastic.
Note:
Whenever the value of Ed is
given negative, then it is not advisable to put a negative sign in the formula.
6.
A 5% fall in price of good raises its demand from 300 units to 318 units.
Calculate its price elasticity of demand.
Solution: The Following information is given:
Q
= 300 |
Q1=
318 |
ΔQ
=Q1-Q =318-300 = 18 |
%
Change in Q.D = =
18/300×100 =
6% |
Percentage change in price = -5% |
|||
Ed=? |
Interpretation:
The above calculation shows that quantity demand increases by 6% when price for the commodity falls by 5% showing the demand is elastic.
Thanks & please
Share with your friends
Comment if you have
any questions.
Comments
Post a Comment